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Complex Hyperspherical Equations,
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Three problems related to the spherical quantum billiar&lrare considered. In the

first, a compact form of the hyperspherical equations leads to their complex contracted
representation. Employing these contracted equations, a proof is given of Courant’s
nodal-symmetry intersection theorem for “diagonal eigenstates” of “spherical-like”
quantum billiards irR". The second topic addresses the “first-excited-state theorem”
for the spherical quantum billiard iR". Wavefunctions for this system are given by
the product form, (ﬂ.pq)Zq+g(p)YFn), wherep is dimensionless displacemerit,s
angular-momentum numbey, is an integer function of dimensiorz,(p) is either a
spherical Bessel functiom(odd) or a Bessel function of the first kind éven) and
representsn(— 1) independent angular components. Generalized spherical harmonics
are WrittenYzn (9). It is found that the first excited state (i.e., the second eigenstate of
the Laplacian) for the spherical quantum billiardRf is n-fold degenerate and a first
excited state for this quantum billiard exists which contains a nodal bisecting hyper-
surface of mirror symmetry. These findings establish the first-excited-state theorem for
the spherical quantum billiard iR". In a third study, an expression is derived for the
dimension of the'th irreducible representation (“irrep”) of the rotation gro@Qgn) in

R" by enumerating independent degenerate product eigenstates of the Laplacian.

KEY WORDS: Hyperspherical equations; complex representation; first exited-state
theorem; spherical quantum billiard; irreducible representations.

1. INTRODUCTION

Many components of the spherical quantum billiardRit (also called the
“Infinite Hyperspherical Well”) have been examined. Application to physics has
been examined mainly with respect to many-body theory (Avery, 1989; Ballot and
Navarro, 1975; Clark and Green, 1980; Cooper and Kouri, 1972; de la Ripella,
1993; de la Ripelle, 1983; Ermolaev and Sochilin, 1964; Fung, 1977; Knitk, 1974;
Smith, 1960). The present work addresses three related topics. In the first of these,
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a contracted form of the hyperspherical equations is presented that gives rise to a
complex representation of these equations. These relations yield necessary con-
ditions for Courant’s noda-intersection symmetry theorem (Courant and Hilbert,
1953) inRR". The second topic addresses extension of the first-excited theorem
(Allessandrini, 1994; Amarrt al, 1991; Jerison, 1991; Letz, 1975; Liboff,
1994a,b,c, 2001; Lin, 1987; Melas, 1992; Sommerfeld, 1958) for regular con-
vex polyhedra quantum billiards iR" to the spherical quantum billiard iR".

This theorem states that for any regular convex polyhedron quantum billiard in
R", a first excited state (i.e., second eigenstates of the Laplacian) exists whose
nodal surface is a bisecting surface of mirror symmetry and that the degeneracy of
this state is the dimension of the billiard.

Wavefunctions in hyperspherical coordinates are given by products of radial
functions and generalized spherical harmon"{é@,(e). Radial functions are solu-
tions of a generalized radial equation and are of the forgpVZq1(0), where
g is an integer function of dimension, angular-momentum number dsandp
is dimensionless displacement. For add (p) is a spherical Bessel function and
for n even,Z(p) is a Bessel function of the first kind. The odd solution reduces to
standard form ifR>. The corresponding radial equation generates all order spher-
ical Bessel functions and Bessel functions of the first kind. It is found that the first
excited state for the spherical quantum billiardhis n-fold degenerate and that
a first excited state exists for this quantum billiard that contains a nodal bisecting
surface of mirror symmetry. These results are in accord with the first-excited-
state theorem stated above. In a closely related problem, a sequential inequality
of Bessel-function zeros is presented which implies that a second excited state
(third eigenstate of the Laplacian) of the spherical quantum billiaf"irexists
whose nodal surfaces are likewise composed of hyperplanes of mirror symmetry.
Degeneracy of this second eigenstatenis-(1)(n + 2)/2. It is shown thah(e(”)(e)
is equal to a sum of products, each of degfeef hyperspherical coordinates.
Lastly, an expression is derived for the dimension of gtieirreducible repre-
sentation (“irrep”) of the rotation grou@(n) in R". [Here we are discussing the
O(n) group excluding inversions, usually writté(n)*.] Basis functions for the
£thirrep of O(n) are given by the eigenfunctions for the hyperspherical quantum
billiard in R".

2. SPHERCAL QUANTUM BILLIARD IN R"

We consider the spherical quantum billiardRA, bounded by the spherical
surfaceS"1. Previous studies @& have addressed graphics (Kocak and Laidlaw,
1987), the classical mechanics of two uncoupled harmonic oscillators (babk
1988), two-body correlations and scattering amplitudes, respectively, in many-
dimensional space (de la Ripella, 1993; de la Ripelle, 1983), and many-electron
atoms (Avery, 1989; Knitk, 1974).
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2.1. Hyperspherical Equations;S(n, q) Functions

The angular description &1 is given in terms of hyperspherical coordi-
nates{6;, n > 2}. Equations relating these to cartesian coordingtes(1 < k <
n)} involve the angular forms:

S(n, n — k) = sing, sinf,_1 - - - Sind_x

S(n, n) = siné,; S(n,0)=1 (1a)

These hyperspherical equations are given by
Xn = §(n, 0) co¥,

Xn—1 = S(n, n) cosH,_1

Xn_2 = S(n,n — 1) co,_»

Xn—3 = S(n,n — 1) sinfp_»

Xn_a4 = S(N, N — 2) COOy_4

Xn_5 = S(N, N — 2) Sinfp_4 (1b)

Xn_6 = S(N, N — 3) cOY_g

Xn—7 = S(N, n — 3) Sinfp_¢

X1 = §(n, 3) sind, = S(n, 2)

Note thatx,, x,_1, andx; individually maintain their forms with change m In
the preceding, the anglésare defined for > 2.

2.2. Generalized Polar and Azimuthal Angles

To identify polar and azimuthal angles in the transformation equations (1a),
we consider first the angular description 8 namely 6 = 3)

X3 = CO0S0O3
Xo = Sinf3 cosH, (2a)
X1 = sinfs sinb,

These relations identifg; as the “polar” angle ané, as the “azimuthal angle.”
The angular description of® is given by ( = 4)

X4 = COSHy

X3 = Sinf4 C0SH3
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Xo = Sinf, Sinfz cosHs (2b)
X1 = Sinf, Sinf3 sinds

Again,f, may be identified as the “polar” angle afg6; as azimuthal angles.
Generalizing to the angular description®¥, we see tha#, is the generalized
polar angle and;, 2 < i < n — 1 are generalized azimuthal angles.

The transformation (1) satisfies the relation

n

Y ox=1 (2¢c)

i=1

-1<x <1 (2d)
The relation (2c) is a result of the orthogonality of the eleméxtsand describes
the unit sphere iiR". With (2c) we write,
n—1
Y X =1-x2=sirfo, (2e)
i=1
At any value ofx, in the domain (2d), the relation (2e) describes a hypersphere

in R"* of radius, sird,. The hypersurfacg, = 0 is a bisecting hypersurface of
mirror symmetry ofS"1,

2.3. Complex Representation

Forn even, (1b) comprises a complete sehg? couplets. Accordingly, we
define the complex variable,

Zg = Xq + iXg-1 (32)
Thus
Zn-2 = S(n,n — 1) exp(6h-2)
Zn—4 = S(n, N — 4) exp(6n-4)

(3b)

24 = §(n, 4) exp(6a4)

z; = §(n, 3) exp(62)

In these relations, for odd, effect the changes:
expitk) — iexp(=itk), [2<k=<n-2] (3c)

and for o > 3),
n-2,n-4,--)— (N-1,n-3,--")
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The termsxn, X,—1 may be written in the complex representation
Zn = expi v
n p (3d)
tany = tanf, cosfn_1

Incorporatingz, into (3b) gives fi/2, (n + 1)/2] equations fon (even, odd).

The relations (3) play a role in the development of generalized spherical har-
monics in the expansion (6b) and Courant’s nodal symmetry partitioning theorem
(Section 4). As an example of the mapping (3), consider the nasé. The
variablesxs, x4 are given by (1b) anas, X, X; by

X3+ iXo = z3 = iS(5, 4) expEih3) = sinbs sind,(cosbs + i Sinbs)
X1 = Rez; = Re[1S(5, 1) exp(i6,)] = sinbs sinbd, sinbs siné,

2.4. Radial Dependence
We turn next to the radial dependence of solutions of the Helmholtz equation
AV + KW =0 (4a)
in a spherical domain bounded )1, on which
v hH=0 (4b)

In (4a), A represents the Laplacian R' andk? represents an eigenenergy. The
Laplacian operator has the spherical-coordinate representation (Taylor, 1986)

A =0, +r2As (5a)
O = —[8%/0r? 4+ (n— 1)r ta/or] (5b)

Where As represents the Laplacian on the unit spherical surfate, andr is
written for the magnitude of the radial vectorRT'. In (5b) a sign change was
introduced consistent with a quantum mechanical representation of the kinetic
energy operator (Liboff, 1998). The eigenvalue equation for the Laplacian on the
unit spheres" 1, is given by (Avery, 1989; Gallagt al., 1990)

AsY™ = ¢(¢ +n—2)y™ (63)

WhereY@(”) is the restriction ta&8"~* of a homogeneous polynomial of degreim
R""1, and is given by the multinomial expansion

o
Y(n):A (X)) (x)% ... (%) b
e {qznqllqzl..,qn;(l) (X2)% - - (Xn) (6b)

QP+Q+- -+ =4 (6c)

g >0,¢£>0,n> 2, and are integers
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The summation in (6b) is over all nonnegative integers subject to the conditions
(2c) and (6¢). The coefficierA is a normalization constant. The functiti{ﬁi“) is
constant if and only iff = 0. In general,Ye(”) is equal to a sum of products, each

of degreet, of hyperspherical coordinates. The degenergfy, ¢), of a state of
givent in R"1 is equal to the number of independent terms in (6b). As shown in
Section 4g(n, ¢) is given by

g(n, £) = B'(n, £) = 8(n, £) (7a)

whereB/'(n, £) is a displaced binomial coefficient adh, £) represents dependent
product states, for whick(n, 2) = 0, for all integem > 2.

Apartfrom factors oh? (Planck’s constant), (6a) is an eigenvalue equation for
the square of generalized angular momentuf,in R". Thus, with As — L?),
in R3, (6a) returns the well known expression

L2Y® = h2e(e + 1Y (7b)
We introduce the product solution to (4a)
v, ) = w(r)Y®" (8a)

wheref representsi(— 1) independent variables. Th’é”) functions are labeled
generalized spherical harmonics. Substituting (8a) into (4a) gives

o) (+n-2
W (+r21 )+k2:0 (8b)
W r
or, more explicitly
FPw” +(n— 1w’ + [Kr? — ¢(¢+n—2)w =0 (&)

where primes denote differentiation with respect tdntroducingp = kr gives
the “generalized radial equation”

P! + 2+ D)W + [k2p? — (£ +1—b)lw =0 (2)
b=n-3 (9b)

In R, b = 0 and (9a) reduces to the well-known Bessel and Neumann functions
(Jackson, 1999). (In this derivation, as in the case for Bessel functioRs,in

one ignores the series that does not satisfy inversion symmetry.) A power series
solution of (9a) that starts ag reveals the indicial equation

AL +b)=£(+1+Db) (10a)

which has the two solutions
r=1 (10b)
A=—f—(1+b) (10c)
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Thep! behavior may be identified with spherical Bessel functions angthe*b)
behavior with spherical Neumann functions. To investigate orthogonality of these
functions we revert to (8b) whose differential operator is rendered self-adjoint by
the factorpP. One obtains the following orthogonality relation for the spherical
guantum billiard on the unit spherekf'.

/ ldr r 2w (ker )w(kor) = 0 (10d)
0

wherek; andk;, are respective zeros wf-functions. It is noted that (10d) reduces

to standard orthogonality conditions for Bessel functions of the first kifiFirin

the following, based on boundedness of the wavefunction at the origin, Neumann
functions are deleted in solutions. The general solution of (9a) is given by (Kamke,
1967)

1
Wio) = ~o2(0) (11a)
Q=1+b=n-2 (11b)
V= 2107+ 4t + Q)] = 5(Q+ 207 (110)

whereZ,(p) represents Bessel functions of orderConsider first the case that
dimensionp, is even, so tha) = 2q, whereq > 0, and integer. In this event, the
solution (11a) becomes

W) = - (o) (12a)
where we have written
v = (g +0) (12b)
which is an integer and?¢(p) is a Bessel function of the first kind (Watson,
1966). InR?, Q(n = 2) = 0, andq = 0. In this eventw(®©)(p) is relevant to the

unit circle quantum billiard (or circular membrane) (Liboff, 1999). For odave
write, Q = 29 + 1, where, agairg > 0, and is integer. There results,

1
w(p) = mzv(o)(lo) (13a)
where
1 1
VO =2+ +a =5 (13b)

is a half odd integer and/®)(p) is a spherical Bessel function (Jackson, 1999).
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That is, forn odd (apart from a factor of)
1.
w(p) = EJQM(/O) (13c)

INRR3, Q(n = 3) = 1, andq = 0. In this casev(®(p) reduces to a standard Bessel
function. Note that

q®=(n-2)2, q®9=n-3)/2, n>2 (13d)

In this manner we find that solutions to (9a) can be classified according to whether
the dimensionaliltyn is even or odd. Fon even, these solutions are weighted
Bessel functions of the first kind, whereas for adthey are weighted spherical
Bessel functions. In either case, the order of the Bessel function that entets is
g+ ¢ > 0, forn > 2. Eigenfunctions for the spherical quantum billiard problem

in R" are given by

W, ) = wq e (kN Y (6) (14)

wherewq (kr) is written for either Bessel functions of the first kind (12) for
even, or spherical Bessel functions (13) floodd and §, ¢) are positive integers.
Eigenenergies are given bl,(j) (Smith, 1960) wheré, ; is the Jth zero ofw,,.
That is,w,,ny(ky,j) = 0, corresponding to Dirichlet boundary conditions on the
unit sphere.

2.5. Angular Dependence

We turn next to the angular component solutioﬁ%’(e) and properties of
the ground and first-excited states of the spherical quantum billiaRd iiwith
reference to (6), we note that the eigenstate of lowest angular eigenvalue is

Y{(6) = K, = constant (15a)

corresponding to the radial componew(kr). The first-degree harmonic poly-
nomial inR" is given by

Y](_n) — Ag_n)(xl +Xo+ -+ Xn) (15b)

whereA(ln) is constant. The preceding polynomial corresponds to the radial com-
ponentwg. 1(kr) in (13). The second-degree harmonic polynomiakihis given
by [see (6b)]

2

Y = AD (xaXa + XaXa + -+ Xn_1%n + X2+ - XZ_) (15¢)

There are

(g) rn-p= 0002 (150)
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independenttermsinthe sum (15c). The polynoijImatches with thevg,.o(kr)
radial componentin (14).
As a specific example of the angular Wavefunctmﬁ,), consider the state

Y = Ay, = A coss, (15€)

which vanishes on the bisecting hypersurfac&qpf;, 6, = 7 /2. With this result
and the form (6b) we note that aN)V‘) function has a component that vanishes on
a bisecting hypersurface & _1.

3. WAVEFUNCTIONS

The ground state of the spherical quantum billiar@®ih forn > 2, is
W(r, 0) = KaWayo(ko 1r) (16)

with corresponding eigenenergl (i) (Smith, 1960). The eigenfunction (16) van-
ishes or8"~ and is otherwise nonnodal in the unit spher&fNote in particular,

that this ground state includes zero value of angular-mome#tuatue in allR".
Recalling that Bessel functions are interlaced and that the first finite zero (Watson,
1966) of Z,(p) grows withv, it follows that a first-excited-state for the spherical
quantum billiard inR" is given by

W, 6) = Wosa (ke ar) YV (6) (17)

with corresponding eigenenergy (1) (Smith, 1960). One component of the pre-
ceding solution includes the factd% which, as noted above, vanishes on a bi-
secting hypersurface & 1. Furthermore, as follows from (15d), the state (17) is
n-fold degenerate. The nodal structure of the first excited state (17), as well as the
nonnodal property of the ground state (16) are both in accord with Courant’s nodal
partitioning theorem (Courant and Hilbert, 1953). These properties establish the
first-excited-state theorem for the spherical quantum billiaf"n

3.1. Second Excited State

We consider the second excited state of the spherical quantum billig&d in
(i.e., the third eigenstate of the Laplacian). It is noted that zeros of Bessel functions
satisfy the following inequality sequence.

0< kv,l < kv+l,1 < kv+2,1 < kv,2 (18)

where, as abové, s is thesth zero ofZ,,. Validity of the first three left inequalities
of (18) is evident. The last inequality on the right of (18) follows from Porter’s
theorem (Watson, 1966) which states that an odd numbds, of zeros exist
between successivg, zeros. With the preceding sequence, it follows that the
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angular component of the second excited state is given by (15c) corresponding to
¢ = 2. Choosing a particular component of the series (15¢) we write

Y, 6) = AL cossy sind, cos_y (19)

which is zero on the hypersurfacés,= 7/2,6,_1 = m andd, = 7, 6h_1 = 7/2,
corresponding to the mutually perpendicular hyperplaxes; 0, x,_1 = 0. These
hyperplanes partition the unit spherefifiinto four subdomains of equal measure.
Again, this result is consistent with Courant’s nodal partitioning theorem (Courant
and Hilbert, 1953). With (19), a second eigenstate of the spherical quantum billiard
in R" is given by

wi(r, 0) = Wqsa(ko, 1 )YV (6) (20a)

As follows from (6c), degeneracy of the second excited state of the spherical
guantum billiard inR" is

gin,2)=(n+2)(n—1)/2 (20b)

4. NODAL INTERSECTION SYMMETRY THEOREM

A theorem described by Courant (Courant and Hilbert, 1953) states that if a
set of nodals of a solution to the Helmholtz equation in a convex domaify iwith
a smooth boundary, intersect, then these nodals make an equal-angled array about
the point of intersection. Note that this is the case for the circular harmonics (Liboff,
1994a,b,c), as well as for the eigenfunction (19). With the present formalism, this
theorem may be generalized®d. Nodal surfaces of a given eigenstatéRihare
obtained by setting the right side of (6b) equal to zero and equating each respective
independent sum of terms to zero. We define a “spherical-like” billiard (Liboff,
2002) inR" as a convex billiard with a smooth boundary whose ratio of minimum-
to-maximum diametersx, is such that > x > 0, 1— x << 1. Consider that
a number of nodal surfaces of a given eigenstate of this billiard intersect at a
point. Mapping this point onto the origin &" indicates that the solution in an
infinitesimal neighborhood about this point is given by (14) V\)i‘ﬁﬂ) given by
(6b). The eigenstates contained in (6b) include a subset of “diagonal” states that
are sums over single-coordinate states of the feftrExpressing these states in
terms of the complex representation (3b) gives, in accord with (6b),

Ye(”)(diag) — 2‘241 + Zgl 4. (21a)

To insure independence of the terms in this sum, we introduce the following
procedure: In the first step, the last term in the sequence (21a) is eliminated.
The remaining terms contain at] exceptx, andx,_1 and are independent. In
the following step, the penultimate term in the sequence (21a) is eliminated. The
remaining terms contain at| variables except,_3z andx,_4 and are independent.
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In each step of this procedure, the resulting sequence in (21a) contains independent
terms and vanishes providing each individual term in the respective sum vanishes.
Consider, for examplé(é“) in the complex representation (3):

Y (02, 03, 64) = (z2)© = (sin5 sin64)* exp(key) (21b)

Nodals of both real and imaginary parts of this relation partition #aexg) hy-
perplane into R wedges of equal angle, respectively [see (1d)]. Continuing in this
manner we find that nodals of the state (21a) partition all hyperplages1)

into 2k wedges of equal angle, respectively. We may conclude that these diagonal
eigenstates of the Helmholtz equatioriiif for a spherical-like quantum billiard,
satisfy Courant’s nodal-symmetry partitioning theorem.

5. DIMENSIONS OF IRREPS OF THE SPHERICAL QUANTUM
BILLIARD IN R"; YOUNG SYMMETRIZERS

The group-theoretic technique to determine the dimensions of irreP§f
generates an algorithm for these entities. It is based on Young symmetrizes
(Hamermesh, 1962) to a subspace of nonvanishing traceless tensors of non-negative
integer rank for a given value of [derived from the general linear groupL(n)]
to obtain traceless tensors of a given symmetry type (i.e., symmetric, antisym-
metric and mixed) with respect to tensor-index sequences. Sets of tensors of a
given symmetry comprise a basis of an irrep@fn). However, the related al-
gorithm does not generate a closed expression for the dimensions of the irreps
of O(n).

5.1. Degeneracies and Basis Functions

In the present work, an alternative procedure is described to obtain the di-
mensions of the irreps dD(n), based on the following: If the symmetries of an
Hamiltonian,H, are described by the group, then the dimensions of irreps Gf
are equal to the degeneracies of of the eigenstatds ©he degeneracyg(n, ¢), of
the (n, £) eigenstate of the spherical quantum billiardhis equal to the number
of independent terms on the right side of (6b) subject to the constraint (6¢). Thus,
calculating the degeneraayn, ¢), of the @, £) eigenstate is related to the number
of independent ordered sequences in the expression (Riordan, 1958)

D OxEXEXF X (22a)
{ai}
As each ordered sequence is at the samé)(values, degeneracy of thig,(¢)

state is equal to the number of partitions¢ahto n slots with relatedy -labels,
and is given by the displaced binomial coefficient
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9N, €) = B'(n, £) = B(N, €) — 1+ 285 n(1— £) (22b)
B(n, €) = (”*ﬁ”) (22¢)

The kronecker-delta symbdl; ,,, serves to insure the valug(2, £) = 2. For the
(n, 2) state, (22b) gives(> 2)

n+1>_1=(n—1)(n+2) (23a)

an 2= ("} !

in accord with (15d). More generallg(n, ¢) may be less than that given by (22b)
due to dependence of product states in (22a). To account for such states, we write

g(n, £) = B'(n, £) — 8(n, £) (23b)
From the known fact thad(3, £) = 2¢ + 1, one finds
2_yp_
8(3,0) = % (23c)

whereas with (22b) one obtaidf, 2) = 0.

The functiong(n, £) gives the dimensions of irreps of the rotation gr&m)
in R". As the Laplacian ifR" is invariant to rotations about the origin, it follows
that eigenfunctions (14) of this operator are a basis oftherrep of O(n). We
note that there is a countably infinite number of irrepdgh).

6. CONCLUSIONS

A contracted form of the hyperspherical equations was employed in formulat-
ing a complex representation of these hyperspherical equations. With this complex
representation, it was shown that “diagonal” eigenstates of the Helmholtz equation
in R" for a spherical-like convex quantum billiard, satisfy Courant’s nodal symme-
try partitioning theorem. Working in hyperspherical coordinates, it was found that
wavefunctions are given by products of Bessel functions and generalized spheri-
cal harmonics. The Bessel functions are solutions of a generalized radial equation.
Solutions separate according to whether dimension numbisreven or odd. For
evenn, solutions of the radial equation are weighted Bessel functions of the first
kind and forn odd, are weighted spherical Bessel functions. It was found that the
first excited state for the spherical quantum billiardRihis n-fold degenerate and
that a first excited state for this quantum billiard exists which contains a nodal
bisecting hypersurface of mirror symmetry. These properties establish the first-
excited-state theorem for this system. A sequential inequality of Bessel-function
zeros was noted to imply that a second excited state exists of the spherical quantum
billiard in R" whose nodal surface is likewise composed of hyperplanes of mirror
symmetry. It was noted further that the angular harmdt‘ﬁ@(@) is equal to asum
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of E)roducts, each of degrek of hyperspherical coordinates. Explicit forms of
Yél 0, andYK(Z)e were given. An expression was obtained for the dimension of the
¢thirrep of theO(n) group inR" by counting independent degenerate eigenstates
of the Laplacian. It was noted that basis functions for dtieirrep of theO(n)
group are given by deriveﬂé”) eigenfunctions for the spherical quantum billiard
inR".
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